AhmadDahlan.NET – Hukum 0 Termodinamika adalah konsep yang bertanggung jawab atas proses pengukuran temperature dasar dengan termometer kontak seperti termometer batang, bimetal dan sejenisnya.
A. Hukum Ke-0 Termodinamika
Sensor tubuh Manusia bekerja dengan baik merespon suhu dalam bentuk “panas” dan “dingin”. Sangat mudah dalam membedakan hal tersebut misalnya hanya dengan menyentuh es kita akan merasa bahwa benda tersebut dingin sedangkan teh yang masih berasap adalah benda yang panas. Tidak pernah terjadi kesalahan dimana kita akan merasakan hal yang sebaliknya.
Akan tetapi tubuh kita akan merasa bingung ketika menyentuh gagang besi dan kayu secara bersamaan dengan suhu yang sama. Seketika tubuh kita akan merasa batang besi akan lebih dingin dibandingkan dengan kayu. Hal ini bukan karena suhu tapi karena besi menyerap kalor lebih cepat di bandingkan dengan kayu. Tubuh kita memang di lengkapi dengan sensor panas saja bukan suhu, karena itu kita tidak akan pernah mengetahui suhu besi dan kayu secara pasti hanya dengan menyentuhnya.
Agar bisa mengetahui suhu dengan pasti maka di butuhkan alat bantu yang dapat secara berulang dan tepat menunjukkan temperatur dari sebuah benda melalui proses pengukuran. Hal yang paling umum digunakan adalah termometer raksa. Dimana sejumlah kecil raksa diletakkan pada pipa kapiler lalu diberi skala. Setiap kali mengalami perubahan suhu rendah, pemuaian dari raksa akan menunjukkan hal yang sama. Pemuaian tersebut akan berhenti ketika suhu termometer sama dengan objek yang diukur.
Hukum 0 Termodinamika menyatakan bahwa jika terdapat dua buah benda pada suhu yang sama bersentuhan dengan benda ketiga, maka ketiga benda tersebut berada pada suhu yang sama (Ketimbangan Termal). Kata bersentuhan ini merujuk pada kebolehan dalam bertukar kalor satu sama lain. Dengan kata lain, mereka tidak dihalangi oleh Isolator panas.
Hukum inilah yang dijadikan konsep pengukuran suhu dengan cara mengganti benda ke tiga dengan sebuah termometer.
Fenomena ini pertama kali diformulasikan oleh R.H. Fowler (1931) meskipun sudah sering kali diamati oleh banyak fisikawan sebelumnya dia. Misalnya Celcius dan Fahrenheit yang membuat termometer namun mereka lebih fokus pada perpindahan kalor dibandingkan kesetimbangan termal. Hal ini pula yang membuat namanya disebut sebagai hukum 0, karena Ilmuwan lebih dahulu mendefenisikan hukum I dan II termodinamika, dibandingkan dengan hukum ini.
Implementasi
Misalkan ada dua benda A dan C memiliki suhu berbeda dimana A lebih tinggi dari C dan keduanya tidak saling berhubungan dengan benda lain, maka suhu ke dua benda tidak akan berubah sampai kapan pun. Suhu benda A akan selalu lebih tinggi dibandingkan dengan benda C.
Segera setelag benda B diletakkan diantara kedua benda tersebut sehingga ketiganya saling terhubung. Hal ini membuat benda akan saling bertukar kalor satau sama salain sampai pada kahirnya suhu ketiga benda tersebut sama. Pada saat suhu mereka sudah sama maka posisi ini di sebut kesetimbangan termal.
AhmadDahlan.NET – Pemuaian akan terjadi pada materi yang dipanaskan tidak peduli pada wujudnya yakni padat, cair maupun gas. Hanya saja pada gas, persamaan pemuaian volume gas menjadi tidak begitu bermanfaat karena pemuaian yang begitu besar sehingga sulit diamati. Jika gas yang dipanaskan berada dalam sebuah wadah kaku, maka pemanasan gas akan berdampakn pada dua hal yakni ekspansi volume (pemuaian) dan atau peningkatan tekanan.
Hukum dan Persamaan Keadaan Gas
Besar volume dari sebuah gas sangat bergantung dengan tekanan dan suhu dari gas tersebut. Hal ini secera ringkas dapat dilihat pada percobaan sederhana yang banyak dilakukan di tingkat sekolah menengah yakni ketika sebuah balon yang menutup tutup botol akan mengembang ketika bagian bawah botol dipanaskan akan membuat balon mengembang seperti yang ditunjukkan pada ilustrasi di bawah ini!
Pada saat udara di dalam botol dan balon dipanaskan, energi kinetik dari partikel-partikel gas akan meningkat membuat gerakannya semakin cepat. Gerakan ini akan merubah variable yakni tekanannya naik shingga bisa mendorong dingding balon menjadi lebih besar dan secera otomatis volume dari balon juga meningkat.
Hukum Boyle, Charless, Gay Lussac.
Hubungan antara Volume, Suhu dan Temperature ini disebut sebagai persamaan keadaan gas dalam hal ini keadaan merujuk pada sistem yang sedang ditinjau. Ketika sebuah gas dalam wadah dipanaskan sehingga suhu naiknya, nilai antara Volume dan Tekanan akan berubah secara perlahan sampai ketiganya mencapai kesetimbangan.
Robert Boyle (1627-1691) membuat percobaan untuk mengetahui hubungan antara variable ini melalui sebuah tabung berbentuk J. Tabung ini diisi dengan raksa sampai pada bagian ujung tabung tertekan. Ketinggian di awal ini kemudian dicatat oleh boleh sebagai wakil dari Volume udara di dalam tabung.
Setelah itu Boyle kemudian menambahkan tekanan pada gas yang ada di sisi tabung tertutup dengan menambahkan jumlah raksa pada tabung dan hasilnya Volume udara disisi tabung tertutup semakin berkurang seiring dengan peningkatan jumlah raksa yang dimasukkan. Hasilnya Boyle berkesimpulan jika
V ∝ 1/P
pada suhu konstan. Hukum kemudian dikenal dengan nama hukum Boyle dimana :
PV = Konstan
Dimana
P : Tekanan (Pa)
V : Volume (m3)
Pada gas-gas dengan tekanan yang tidak terlalu besar, terdapat hubungan liner antara perubahan temperature dan volume gas. Hubungan ini dapat ditulis
V ∝ T
Persamaan ini disebut sebagau Hukum Charles. Hukum ke Tiga dari gas ideal adalah hukum Gay Lussac. Gay Lussac menyatakan bahwa pada Volume yang konstan tekanan gas berbanding lurus dengan temperature mutlak dari sebuah gas.
P ∝ T
Ketiga hukum gas ini yakni Byle, Charels dan Gay Lussac, bukanlah hukum-hukum riil karena hanya digunakan untuk mendeskripsikan karakteritik gas pada suhu dan tekanan yang tidak terlalu tinggi dan juga terlalu rendah. Rentang nilai tinggi dan rendahnya besaran tersebut bergantung dari banyak aspek sehingga sulit untuk membuat suatu acuan yang dapat mewakili seluruh variabel dari kondisi-kondisi gas.
AhmadDahlan.NET – Karakteristik fisik dari sebuah benda pada tingkat atom penyusunnya sangat dipengaruhi oleh energi yang ada pada benda itu sendiri. Penambahan energi luar akan membuat perubahan keadaan pada materi itu sendiri.
Pemuaian
Sebuah benda diberikan energi panas akan membuat energi kinetik dari atom-atom tersebut bertambah. Pada benda padat, atom yang cenderung kaku ketika dipanaskan akan bergetar lebih cepat sehingga jarak antar satu atom dan lainya bertambah. Jika semua pertambahan panjang pada tingkat atom ini diakumulasikan maka akan didapatkan pertambahan panjang dari materi yang dapat diamati. Hal ini disebut sebagai pemuaian termal atau pertambahan panjang karena kenaikan suhu.
Pada dasarnya sebenarnya pertambahan panjang akan terjadi ke semua arah tidak hanya x (panjang) sama tapi juga pada arah y dan z, namun mari kita ambil acuan pada titik x saja. Pertambahan panjang dari sebuah zat yang dipanaskan akan semakin besar jika samakin banyak atom yang dipanaskan dengan persamaan :
Δl = α lo ΔT
dimana
Δl : Pertambahan panjang (m)
α : Koefisien muai panjang (Co-1)
lo : Panjang mula-mula (m)
ΔT : Perubahan suhu (Co)
α merupakan karakteristik khusus yang nilai bergantung dari karakteristik fisik sebuah unsur atau senyawa berdasarkan perubahan panas yang dialami. Meskipun nilainya tidaklah konstan pada seluruh suhu namun pada suhu rendah, perubahan panjang dapat dianggap dianggap linier sehingga α memiliki nilai konstan.
Adapun nilai-nilai α dari berbagai benda pada suhu 20oC ditunjukkan pada table berikut :
Materi
Koefisien Muai Linier (α)
Koefisien Muai Volume (γ)
Besi
12 x 10-6
35 x 10-6
Emas
14 x 10-6
42 x 10-6
Aluminium
25 x 10-6
75 x 10-6
Timah
29 x 10-6
87 x 10-6
Beton
≈12 x 10-6
≈36 x 10-6
Kuarsa
0,4 x 10-6
1 x 10-6
Raksa
180 x 10-6
Bensin
950 x 10-6
Air
210 x 10-6
Udara (STP)
3400 x 10-6
Contoh Kasus :
Sebuah jembatan disusun dari beberapa alas baja dengan panjang 10 m pada suhu 20oC. Berapakah jarak minimum antara baja jika perbedaan suhu pada malam hari adalah 15oC dan siang hari 33oC!
AhmadDahlan.NET – Secara sederhana suhu (temperatur) dapat diartikan sebagai derajat panas dan dingin dari suatu zat. Manusia bisa dengan mudah mengesan suhu dari lingkngan dan benda seperti Ice Cream itu dingin, soto ayam itu hangat atau air mendidih itu panas.
Hanya saja, kesan yang dirasakan manusia itu relatif dan sifatnya subjektif. Misalkan saja pada saat kita berwisata di daerah pegunungan yang lumayan dingin. Mungkin saja kita butuh jaket yang tebal agar bisa menyesuaikan diri dengan suanan lingkungan sekitar namun bagi penduduk lokal, suhu yang mereka alami ini biasa saja.
A. Pengertian Suhu
Derajat panas dan dingin suatu benda tidaklah cukup dijadikan defenisi baku dari suhu karena hal ini bersifat subjektif. Agar defenisi lebih operasional, suhu dapat didefenisikan sebagai besaran yang diukur dengan termometer sebagaimana banyak besaran fisika lainnya yang bisa dengan mudah didefenisikan dari cara besaran tersebut diukur.
Indera Manusia memiliki sensitifitas yang sangat terbetas dalam mengesan suhu. Misalkan kita baru saja mengambil dua buah es batu dari kulkas yang berbeda yakni dari kulkas industri yang bisa menurunkan suhu di dalam frezenya sampai -15oC dan kulkas rumahan yang hanya mampu menurunkan suhu sekitar -5oC.
Kita tentu saja tidak membedakan es mana yang keluar dari kulkas rumahan dan kulkas insutri hanya dengan memanfaatkan tangan kita, lebih tepatnya lapisan kulit yang berperan sebagai indera peraba manusia. Praktis manusia hanay bisa merasakan rasa sakit selian rasa dingin ketika terlalu lama memegang ke dua es tersebut.
Kedua benda tersebut berada pada suhu di bawah 0oC dan kita sama-sama sepakat suhu ini sama-sama dingin. Hanya saja dari sudut pandang energi, kita bisa saja dengan mudah menyebutkan bahwa suhu salah satu es jauh lebih panas dibandingkan dengan es yang lainnya.
Perbedaan 10oC pada kedua es tersebut ternyata berasal dari perbedaan energi panas masing-masing es. Jika saja massa dari kedua es tersebut sama-sama 1 kilogram, maka terdapat perbedaan energi panas sebesar 21.000 Joule dari kedua es ini.
Lantas apa yang dimasuk dengan temperatur?
Suh adalah indikator energi kinetik tingkat partikel yang dimiliki dari suatu benda. Selama sebuah benda masih bergetar maka akan selalu memiliki energi panas pada benda tersebut, sekalipun suhunya -100oC.
Atom-atom penyusuan dari sebuah materi akan terus meneur bergetar. Getaran ini dalam bentuk energi kinetik dan setiap benda yang bergetar akan menghasilkan gesekan yang membentuk energi panas.
Semua atom-atom benda bergetar, tidak hanya zat cair dan udara. Benda padat yang terlihat kaku dan diam saja juga memiliki atom-atom yang bergetar. Kecepatan getar dari atom-atom tersebut bergantung dari suhunya. Semakin tinggi suhu dari benda tersebut, semakin besar getarannya.
Pada zat mengalir (Fluida), partikel fluida, baik dalam bentuk atom maupun senyawa, bergetar dengan tingkat energi yang relatif lebih tinggi dibandingkan dengan benda padat. Selain energi kinetik, ada gaya yang menghubungkan antar satu partikel dengan partikel lainnya. Gaya tarik antar partikel pada fluida lebih rendah dibandingkan dengan zat padat.
Gaya tarik yang lemah ini membuat partikel bergetar dengan lebih cepat yang secara otomatis membuat energi kinetiknya lebih tinggi. Ketika sejumlah kalor diberikan lagi ke dalam fluida maka energi tersebut akan diserap oleh partikel. Akibatnya getaran dan gerakannya semakin cepat. Ketika gerakan sudah cukup cepat, maka partikel sudah punya cukup energi untuk lepas dari ikatan antar partikel dalam wujud cair membuat partikel terlepas dan terpisah. Partikel ini selanjutnya disebut wujud gas.
Demikian pula sebaliknya, jika sejumlah energi panas keluar dari benda tersebut, maka gerakan partikel penyusun benda akan lebih sedikit, sampai akhirnya akan lebih lemah dari gaya ikat antar partikel. Dalam kondisi benda akan memiliki wujud padat. Meskipun dalam wujud padat bukat berarti partikel-partikel penyusun benda tersebut diam. Pada tingkat mikroskopik, partikel ini tetap bergetar dan getaran menghasilkan panas yang diindikasi sebagai suhu benda.
Penambahan energi pada suatu materi akan menunjukkan berbagai macam perubahan fisis. Pada metal misalnya, penambahan panas akan membuat jarak antar satu atom dan atom lainnya menjadi lebih renggang. Jika total tari renggangan ini dijumlahkan, maka dimensi panjang dari zat padat ini akan mengalami pertambahan panjang dan hal ini disebut pemuaian. Namun tidak semua panas akan membuat logam memuai, sebagaian dari panas tersebut jika cukup panas akan dipancarkan dalam bentuk radiasi, sebagaimana logam tungsen ketika dipanaskan atau baja yang sedang ditempa akan terlihat berpendar.
B. Termometer
Termometer adalah istilah yang merujuk pada alat yang digunakan untuk mengukur suhu suatu benda. Bentuknya berbagai macam, tergantung dari suhu dan objek yang akan diukur.
Setiap zat memiliki perubahan yang unik ketika mengalami perubahan suhu. Perubahan ini berbeda-beda tergantung dari karakteristik zat itu sendiri. Misalkan saja Aluminium dan Baja, ketika dipanaskan dan menhalami perubahan suhu yang sama, perubahan panjang (pemuaian) dari kedua logam ini berbeda. Aluminium memuai lebih panjang dibandingkan dengan baja.
Jika dua logam ini ditempelkan satu sama lain maka perubahan panjang tidak akan lurus ke satu arah saja tapi lebih cenderung melengkung ke arah baja karena koefisien muai panjang baja lebih rendah dibandingkan dengan aluminium. Konsep ini selanjutnya digunakan untuk menunjukkan perubahan suhu dengan meletakan jarum di bagian ujung logam campuran.
Berdasarkan hasil percobaan di laboratorium, koefisien muai panjang dari Aluminium adalah 0,000024/K sedangkan baja adalah 0,000012/K Hal ini berarti jika sebatang Aluminium sepanjang 1 meter ketika dipanaskan sekitar 1oC hanya akan mengalami perubahan sebesar 0,000024 meter atau 0,0024 cm. Perubahan ini tentu saja sangat sulit diamati oleh mata telanjang manusia dengan demikian Bimetal tidak begitu baik digunakan sebagai bahan termometer yang mengukur perubahan suhu-suhu kecil.
Dalam upaya membuat termometer yang digunakan untuk menunjukkan perubahan suhu yang kecil maka dicari benda dengan karakteristik koefisien muai panjang lebih besar dibandingkan logam. Sebagaimana yang kita kenal sekarang zat termometer yang digunakan pada pengukuran suhu-suhu sekitar suhu kamar sampai air mendidih ada dua yakni Raksa dan Alkohol.
Kedua zat tersebut mampu menunjukkan perubahan yang signifikan dengan sedikit perubahan suhu. Karakteristik ini yang dijadikan alasan menjadikan dua zat ini sebagai bahan termometer. Cara pembuatan terbiang sederhana yakni hanya dengan membuat pipa kapiler yang sangat tipis sehingga pemuaian zat luas dan voluem zat dapat diabaikan dan hanya pemuaian panjang yang dapat diperhitungkan.
Demikian pula halnya untuk mengukur suhu-suhu yang sangat tinggi seperti pada saat logam sudah mencari karena pasannya, maka logam tidak lagi digunakan sebagai bahan pembuat termometer. Dibutuhkan konsep baru dalam pembuatan termometer seperti radiasi benda bersuhu tinggi. Besar Radiasi yang dipancarkan benda ternyata berbanding lurus dengan suhu pangkat 4, maka hal ini bisa dijadikan indikator pengukuran suhu.
Tentu saja saja tidak mungkin mengukur suhu matahari dengan termometer batang, karena kita akan kesulitan mencelupkan termometer tersebut dipermukaan matahari dan yang kedua suhu permukaan matahari yang mencapai 6000 oC sangat tinggi dan bisa melelehkan benda pada saja yang dibawa dari bumi ketika menyentuh permukaannya.
C. Skala Pada Termometer
Skala pada termometer dibuat berdasarkan dua hal yakni berdasarkan penemunya dan berdasarkan nilai mutlak. Pada skala termometer yang dimabil dari penemunya, skalanya berlaku secara umum namun konsep yang digunakan dalam membuat desain termometer sifanya lebih subjektif. Contoh skala-skala ini adalah Celcius, Fahrenheit dan Reamur.
Konsep skala termometer lainnya diambil berdasarkan nilai mutlak yakni dengan asumsi panas yang diindikasi oleh suhu adalah bentuk energi yang nilainya selalu ada maka tidak akan pernah ada keadaan dimana energi suatu objek bernilai negatif. Bentuk energi paling minimal adalah 0 sedangkan simbol negatif energi hanya dapat berarti bahwa sejumlah energi keluar sebuah kerangka acuan. Kerangka acuan boleh jadi sistem, lingkungan ataupun semesta.
Skala yang diambil berdasarkan nilai mutlak ini ada dua yakni Kelvin dalam sistem Metrik dan Rankine dalam sistem BTU atau British Termal Units.
Fakta Unik – Skala suhu dalam sistem British Thermal Units (BTU) adalah Fahrenheit dan sistem ini digunakan oleh Amerika Serikat, sedangkan Inggris sendiri menggunakan skala Celcius.
1. Termometer Celcius
Derajat Celcius (oC) merupakan satuan suhu yang dijadikan standar pengukuran untuk skala Centigrade atau SI. Skala ini diperkanalkan oleh Anders Celcius (1701-1744) namun nama Celcius baru dijadikan skala pada termometer pada tahun 1948 untuk menghormati atas penemuannya.
Konsep yang digunakan Celcius dalam mendesain termometernya adalah air tepat membeku dan air tempat akan mendidih. Sebatang Termometer berisi raksa dicelupkan pada es yang tepat mencair kemudian ditandai sebagai batas atas termometer. Titik ini ditandai dengan nilai 100oC. Selanjutnya air dipanasakan sampai akhirnya mendidih. Titik didih air ini ditandai sebatas batas bawah termometernya dengan nilai 0oC. Pengukuran tersebut dilakukan pada tekana satu 1 atm.
Jarak yang terpisah 100 nilai ini dipilih karena pada masa itu semua alat ukurn standari disusun dengan skala kelipatan 10, seperti 1 meter yang tidak lain adalah 100 cm atau 1 kg yang tidak lain 1000 g.
Jeans-Pierre Christin menganggap bahwa skala tersebut tidak praktis karena energi yang bertambah pada air justru menunjukkan penurunan suhu. Tahun 1743, Christin kemudian membalik skala ini dimana air tepat membeku pada suhu 0oC dan tepat mendidik pada suhu 100oC.
2. Termometer Fahrenheit
Derajat Fahrenheit (oF) adalah satuan suhu yang digunakan di Amerika Serikat. Skala ini diperkenalkan oleh Daniel Gabriel Fahrenheit (1686–1736). Suhu ini dianggap tidak lazim karena keluar dari kebiasaan umum dimana alat ukur kebanyakan menggunakan angka 0o sebagai batas bawahnya termasuk untuk dua skala lainnya yakni Reamur dan Celcius. Es mulai mencair sendiri berada pada titik 32oF dan mendidih pada suhu 212oF. Padahal Fahrenheit sebenarnya tetap menggunakan konsep 0o dan 100o pada pembuatan skalanya hanya saja acuannya berbeda.
Fahrenheit memilih titik bawah (0oF) pada skalanya dengan mengambil suhu paling rendah pada musim dingin di daerah Danzig, Polandia sekitar tahun 1708 sampai 1709. Danzig sendiri adalah daerah asal Fahrenheit dan tempat dia membuat skala termometernya. Suhu 100oF diambil dari suhu tubuh rata-rata orang sehat. Titik ini kemudian dijadikan standarisasi skala Fahrenhit.
Beberapa tahun berikutnya Skala ini dikoreksi sedikit mengingat suhu terdingin di Danzig setiap tahun mengalami peningkatan karena pemasan Global. Koreksi ini dilakukan dengan cara membuat batas bawah dari campuran Air, Es, garam laut dan Amonium Clorida yang nilainya lebih rendah 2oF hal ini membuat batas atasnya juga berubah yang tadinya orang sehat ada pada skala 100oF kini menjadi 98oF. Pada tahun 2021 saja suhu terendah di Danzig yang tercatat hanya berada pada 24,8 oF, sudah tidak sedinging ketiak Fahrenheit masih hidup 3 abad yang lalu.
Setelah tulisan dari Andres Celcius populer tentang Titik Acuan Termometer, Skala pada termometer Fahrenheit kemudian dikaliberasi dengan skala Celcius dan hasilnya didapatkan bahwa titik Air tepat mencari pada tekanakn satu atmosfer (0oC) setara dengan titik 32oF sedangkan air mendidih (100oC) setara dengan 212oF. Dengan demikian 100 celcius derajat serara dengan 180 fahrenheit derajat.
Catatan : Penyebutan skala yang dimulai dari derajat, seperti derajat Celcius menunjukkan titik, misalnya 15 derajat Celcius berarti berada diantara 14 derajat Celcius dan 16 derajat Celcius sedangkan Celcius Derajat menunjukan interval skala misalnya 3 celcius derajat itu bisa jadi dari 7 derajat celcius ke 10 derajat celcius ataupun dari 121 derajat celcius ke 124 celicus derajat.
Konversi Satuan Fahrenheit-Celcius
Kaliberasi skala ini kemudian bisa dijadikan acuan konversi skala Fahrenheit ke Celcius yakni dengan ilustrasi sebagai berikut :
AhmadDahlan.NET – Mandi dengan air hangat memang menjadi salah satu hal yang bisa membuat tubuh kembali segar, sayangnya bagi mereka yang tidak memiliki heater otomatis, mandi air hangat akan sedikit merepotkan. Pasalnya kita harus mencapurkan sejumlah besar air dingin dan sedikit air panas agar mendapatkan air hangat yang diinginkan. Secara tidak langsung yang kita lakukan untuk mendapatkan air hangat ini adalah implementasi dari Hukum II termodinamika terutama untuk Asas Black.
Asas Black
Panas memiliki karakteristik dapat saling bertukar secara alami dari benda yang bersuhu tinggi ke benda bersuhu lebih rendah. Kalor dari benda bersuhu tinggi akan terus menerus mengalir ke benda bersuhu rendah sampai akhirnya ke dua suhu benda tersebut sama. Jumlah kalor yang hilang dair benda bersuhu tinggi akan sama dengan jumlah kalor yang diterima benda dingin. Hal ini selanjutnya dikenal dengan asaz Black.
Secara matematis, Asaz Black dapat ditulis :
Qlepas = Qterima
Menurut Black, Panas akan mengalir secara spontan dari benda bersuhu tinggi ke benda bersuhu rendah sampai akhirnya ke dua benda tersebut mencapai kesetimbangan termal. Oleh karena itu hal ini tidak akan terjadi sebaliknya dimana panas pindah dengan sendirinya dari benda bersuhu rendah ke benda bersuhu tinggi. Dibutuhkan usaha dari luar untuk membalik kondisi tersebut dan hal ini selanjutnya diimplementasikan dalam bentuk refrigrator.
Contoh Kasus Asas Black
Misalkan dua zat cair masing berkalor jenis c1 dan c2 bermassa m1 dan m2. Jika keduanya dicampurkan lalu dianggap tidak ada kalor yang hilang ke lingkungan dam c2 memiliki suhu yang lebih tinggi dibandingkan c1, maka suhu akhirnya campuran dari kedua zat adalah …
Qlepas = Qterima
m2C2(TT-TM) = m1C1(TM-TR)
m2C2TT – m2C2TM = m1C1TM – m1C1TR
m1C1TM + m2C2TM = m2C2TT + m1C1TR
TM = (m2C2TT + m1C1TR) / (m1C1+ m2C2)
Dimana TM adalah suhu akhir campuran kedua zat cari tersebut. Jika kedua zat cari tersebut berasal dari zat yang sama (C1 = C2) maka suhu akhir keduanya adalah
TM = (m2TT + m1TR) / (m1+ m2)
untuk kasus dua benda dengan massa sama dan jenis yang sama hanya berbeda dari suhunya, maka suhu akhir campurannya adalah :
TM = (TT + TR) / (2)
Latihan Soal
Misalkan suhu udara saat dingin sehingga kamu ingin mandi dengan air hangat bersuhu 40oC. Berapakah banyakkah air yang akan kalian panasakan hingga mendidih jika jumlah air yang kamu gunakan mandi adalah 80 L?