Kinematika – Posisi, Kecepatan dan Percepatan

5 min read

Kinematika Gerak


Ahmaddahlan.Net – Kinematika adalah cabang ilmu fisika yang mempelajari gerak tanpa mempertimbangkan penyebab geraknya. Gerak sendiri adalah fenomena posisi dari suatu benda yang ditinjau dari satu titik acuan. Titik acuan membuat sebuah benda bisa jadi bergerak terhadap satu acuan namun diam terhadap acuan lainnya.

Misalnya saja seorang pengamat sedang melihat dua orang yang sedang naik motor dengan kecepatan 60 km/h. Dua orang tersebut tentu saja bergerak terhadap pengamat yang diam namun mereka saling dia satu sama salam di atas motor meskipun motornya bergerak dengan kecepatan 60 km/h.

A. Posisi, Jarak dan Perpindahan

Posisi adalah suatu titik acuan yang digunakan dalam meninjau letak suatu objek dalam hal ini partikel. Titik acuan ini pada umunya disebut origin yang jika dimasukkan ke dalam koordinat kartesius disebut itik O (0,0), namun bisa saja titik acuan tersebut tidak (0,0).

Kerangka Acuan Posisi dan Gerak

Misalnya sebuah mobil mula-mula diam berada di posisi x1 dari sebuah acuan O. O adalah acuan awal untuk meninjau mobil yang terpisah sejauh x1, namun jika ditinjau dari x1, maka posisi awal mobil adalah 0. Sistem ini kemudian disebut sebagai titik acuan.

Ketika mobil bergerak dari posisi awal ke posisi akhir di x2, maka mobil ini sudah mengalami perubahan posisi dari x1 ke x2. Perubahan posisi ini selanjutnya disebut sebagai gerak. Besar perpindahan mobil ini bisa dituliskan s = x2 – x1.

Jika mobil kembali ke titik awal yakni x1 mobil melakukan menempuh jarak sejauh x1 – x2 – x1 kembali. Jarak ini adalah jarak 2s atau 2(x2-x1), meskipun jarak tempuhnya menjadi dua kali jarak tempuh awal namun jika ditinjau berdasarkan posisi awalnya, maka mobil ini bisa digatakan tidak bergerak karena posisinya berada di posisi awal. Dalam hal ini mobil secara fisis bisa dikatakan diam.

Agar lebih jelas mari kita asumsikan seorang berjalan dari titik A ke timur sejauh 3 km, kemudian bergerak ke utara sejauh 4 km, seperti yang ditunjukkan pada ilustrasi berikut :

PErbedaan Perpindahan dan Perubahan Posisi

Gambar di atas menunjukkan seseorang yang sedang sedang berjalan dari posisi P ke Q sejauh 3 km, kemudian berjalan lagi ke utara sejauh 4 km sampai ke R. Orang tersebut telah menempuh jarak tempuh (l) sejauh 7 km namun hanya mengalami perubahan posisi (s) sejauh 5 km.

Berdasarkan sumbu kartesian, maka gerak orang tersebut dapat dinotasikan sebagai s = 3 i + d j. Notasi ini adalah simbol yang mewakilkan sebuah hubungan dua buah peubah atau lebih. Pada umumnya di Fisika fungsi posisi beruah sesuai dengan waktu. oleh karen itu biasanay ditulis dalam bentuk

s(t) = (at2 + bt + c) i + (pt2 + rt + r) j + (xt2 + yt + z) k

Fungsi tersebut menunjukkan satu posisi sebuah partikel pada satu waktu tertentu t dengan limit (taktu tinjau) t mendekati 0.

B. Kecepatan dan Kelajuan

Secara fisis, Kecepatan memiliki makna sebagai perubahan posisi terhadap waktu, sedangkan kelajuan adalah jarak tempuh terhadap satuan waktu atau dapat dituliskan sebagai berikut :

Rumus kecepatan dalam fisika

Dimana s dalam meter, t dalam sekon dan v dalam satuan m/s.

Misalkan seseorang yang berjalan sejauh 3 km ke timur selama 25 menit, kemudian berjalan lagi ke utara selama sejauh 4 km selama 35 menit. Maka ornag tersebut akan memiliki kelajuan sejauh 7 km/jam dan kecepatan sebesar 5 km/jam.

Kecepatan Sesaat

Pernahkan anda melihat rambu lalu lintas menuliskan simbol kecepatan maksimal 72 km/j? Rambut tersebut menyimbolkan bahwa kecepatan mengendari di area tersebut tidak boleh lebih dari 72 km/j yang bisa dilihat dari spedometer yang sudah dilengkapi di setipa kendaraan. Speedometer tidaklah mengukur kecepatan sebuah kendaraan melainkan kecepatan sesaat dari sebuah kendaraan dengan interval waktu t mendekti 0.

Rumus kecepatan sesaat

Kecepatan sesaat ini bisa didapatkan dari turunan pertama jarak terhadap waktu atau v(t) = ds/dt atau dapat dituliskan sebagai berikut

s(t)‘ = v(t)=((at2 + bt + c) i + (pt2 + rt + r) j + (xt2 + yt + z) k ) dt.

Gerak Lurus Beraturan

Magnitude kecepatan sesaat sebuah benda akan selalu sama dengan kelajuan sebuah benda. Jika besar kecepatan ini bisa dipertahankan untuk waktu yang cukup lama maka akan didapatkan kecepatan rata-rata sama dengan kecepatan dan kelajuan dari benda itu sendiri. Gerak ini selanjutnya disebut sebagai Gerak lurus beraturan.

Gerak lurus beraturan adalah gerak yang partikel dengan kecepatan konstan pada lintasan yang lurus. Gerak ini adalah gerak dimana tidak ada perubahan kecepatan di dalamnya, hasilnya kelajuan, kecepatan rata-rata dan kecepatan sesaat dari GLB akan sama dengan kecepatannya.

GLB itu sendiri adalah sebuah fenomena yang sulit didapatkan secara alami di alam. Oleh karena itu untuk mengamati gerak ini harus dilakukan pemodelan dalam laboratorium.

Misalnya saja, ketika kita mengendarai motor dari kabupaten A ke B yang jaraknya 60 km. Jika mobil diupayakan bergerak dengan kecepatan rata-rata 60 km/h, maka seharusnya kita akan sampai dalam waktu 1 jam, namun faktanya tentu saja tidak demikian.

Sebuah mobil yang melaju di jalan tol yang lurus dengan kecepatan yang tertera pada speedometer sebesar 50 km/h tidaklah bergerak secara real 50 km/h. Hal ini disebabkan oleh unsur manusia dalam menekan pedal gas yang sangat dinamis, kondisi udara yang menghambat bentuk aerodinamis mobil, gurat ban dan masih banyak lagi.

Gerak Lurus Beraturan bisanya dapat ditemukan pada partikel-partikel kecil dalam praktikum di Laboratorium fisika seperti gerak ticker timer bermesin atau tetes minyak milikan.

Sebuah partikel yang melakukan GLB akan memiliki persamaan gerak yang linier sehingga dapat digambarkan dalam grafisk s terhadap t.

Grafik GLB kecepatan konstan dengan s terhadap t

Gradien dari grafik tersebut tidak lain adalah besar kecepatan dari GLB. Dengan demikian maka besa nilai v adalah :

rumus kecepatan


C. Percepatan

Percepatan adalah sebuah perubahan kecepatan dari sebuah partikel atau benda yang bergerak. Misalnya pada saat lampu mulai merah di jalan, seorang yang menarik tuas gas motornya, mula-mula diam kemudian mendapatkan perubahan kecepatan samapi akhirnya motor bisa melaju hingga kencang.

Percepatan ini adalah faktor yang menentukan seberapa besar perubahan kecepatan yang dapat dialami oleh sebuah benda yang bergerak. Percepatan rata-rata dapat didefenisikan sebagai besar perubahan kecepatan terhadap waktu, namun hanya ditinjau dari dua keadaan saja, yakni keadaaan awal dan keadaan akhir.

Konsep dan prinsip perubahan kecepatan

Persamana ini kemudian dapat dituliskan dengan simbol kecepatan rata yakni :

Rumus percepatan rata-rata

Dengan demikian dapat disimpulkan jika, percepatan merupakan turunan ke dua dari fungsi jarak d2s/dt2 dan turunan pertama dari kecepatan dv/dt. Perubahan kecepatan terbagi ke dalam dua jenis yakni dipercepat dengan nilai a yang postifi dan diperlambat dengan a bernilai negatif.

Sebuah benda yang jatuh dari ketinggian tertentu akan mengalami gerap jatuh bebas yang tidak lain adalah gerak dipercepat. Faktor perubahan kecepatan bernilai g yang setara dengan 9,8 m/s2 sampai dengan 10 m/s2, bergantung dari posisi dan kedudukan relatif benda tersebut terhadap permukaan bumi dan garis ekuator.

Percepatan sesaat (a) adalah besar perubahan kecepatan rata-rata dengan interval waktu yang sangat dekat atau dengan limit t mendekati 0. Secara matematis dapat dituliskan sebagai berikut :

Rumus Percepatan sesaat dalam fisika

Jika data kecepatan dan posisi dari benda yang bergerak dengan percepatan sesaat yang tetap, dalam dilihat pada grafik di bawah.

Grafik Gerak Lurus Berubah Beraturan

Gerak Lurus Berubah Beraturan.

Pada kondisi tertentu misalnya besar dari kecepatan sesaat ini dapat dipertahankan atau seragam dengan interval waktu yang panjang, maka percepatan sesaat dari gerak tersebut akan sama dengan dengan percepatan rata-rata-nya. Kondisi ini selanjutnya disebut sebagai gerak lurus berubah beraturan.

Sebagai contoh sebuah benda yang mula-mula diam, kemudian dipacu hingga kecepatan pada saat 2 detik awal adalah 5 m/s. Kondisi ini kemudian dipertahankan sehingga pada 4 detik awal kecepatan benda sebesar 10 m/s, kemudian seterusnya. Setiap interval dua detik, benda akan mengalami pertambahan kecepatan sebesar 5 m/s.

Perubahan kecepatan tersebut didapatkan dari percepatan konstan. Jika t awalnya sama dengan nol, maka persamaan gerak ini bisa dituliskan sebagai berikut :

Rumus umum percepatan

Kemudian persamaan dapat ditulis sebagai persamaan umum gerak lurus berubah berubah beraturan :

vt = v0 + at

Dalam kasus ini akan sama dengan v rata-rata dari gerak sebuah benda dapat digunakna untuk menghitung jarak yang ditempuh benda, karena benda bergerak dengan percepatan seragam, sehinga :

Persamaan umum dari gerak lurus berubah beraturan

Selajutnya masukkan nilai kecepatan rata-rata yakni :

Persamaan Umum gerak lurus berubah beraturan

Gantikan vt dengan persamaan umum gerak Lurus berubah beraturan.

Penuruan rumus untuk menghitung jarak pada gerka lurus berubah beraturan

Jika tinjau benda dari titik x0 = 0, maka persamaan diatas dapat ditulis sebagai sebagai persamaan umum perubahan posisi dapat GLBB.

Rumus umum jarak

Dua persamaan umum GLBB ini dapat disubtitusikan menjadi persamaan baru yang secara fisis tidak memiliki makna khusus namun sangat memabntu dalam proses matematis dalam menghitung besar kecepatan yakni

vt2 = v02 + 2as

Soal Uji Diri Kinematika

Bagian 1

  1. Jelaskan perbedaan antara Jarak, Perpindahan, Posisi dan Perubahan Posisi!
  2. Sebutkan perbedaan mendasar mengenai kecepatan, kecepatan sesaat, – kecepatan rata-rata.
  3. Jika speedometer pada kendaraan bermotor hanya digunakan untuk menunjukkan kecepatan sesaat, maka apakah manfaat yang didapatkan bagi pengendara di kehidupan nyata?
  4. Apakah ada kemungkinan kecepatan memiliki nilai lebih besar dari kelajuan dari suatu benda yang bergerak?
  5. Pada saat anda ditanya berapa lama waktu yang dibutuhkan untuk suatu daerah ketiak sedang berkendara, maka taksiran waktu yang kalian butuhkan dimabil dari jenis kecapatan …

Bagian 2

  1. Sebuah partikel bergerak dengan persamaan posisi s(t) = (4t2 – 3) i + (t + 2t + 7) j + 2t3 z. Tentutkan
    1. Posisi dan perubahan posisi benda pada saat t = 3
    2. Persamaan Kecepatan di masing masing sumbu x, y dan z
    3. Percepatan sesaat benda pada saat t = 2
    4. Kecepatan sesaat benda pada saat t = 2
  2. Toni menjatuhkan sebuah bola dari atas sebuah gedung. Jika massa bola cukup besar sehingga gesekan udara dapat diabaikan, berapakah ketinggian gedung jika bola tersebut butuh waktu 5 detik tepat sebelum menyentuh tanah!
  3. Dua buah mobil bergerak di lintasan lurus dari posisi A dan B yang terpisah sejauh 5 km/jam. Jika Mobil A bergerak di belakang B dengan kecepatan 3 km/jam dan mobil bergerak 2 km/jam. Kapan dan dimanakan mobil A dapat menyusul B!

Bagian 3

Sebuah data hasi perocabaan menunjukkan data sebuah benda bergerak lurus :

Jarak (m)Waktu (s)
10,001,98
15,002,96
20,004,02
25,005,04
30,006,00
  1. Buatlah grafik jarah terhadap waktu dari percobaan di atas!
  2. Tentukanlah kecepatan dari benda tersebut berdasarkan nilai tabel!
  3. Tentukanklah kecepatan rata-rata dari hasil percobaan tersebut!

Tinggalkan Balasan