Suku Bunga Majemuk adalah rumus yang digunakan untuk menghitung tabungan seseorang jika ditabung pada sebuah bank yang memberikan bunga bank x% dari jumlah tabungannya pada bulan sebelumnya.
Nilai dari tabungan seseorang dengan rumus bunga majemuk dapat dihitung dengan rumus:
M_n=M_0(1+i)^n
Keterangan :
Mn : Nilai tabungan
M0 : Tabungan Awal
i : Suku Bunga
n : periode ke
Miskonsepsi : Pada umumnya orang berpikir jika ia menabung 1.000.000 rupiah dan bunganya adalah 10% satu tahun maka tabungan 2 tahun kemudian adalah 1.200.000. Padahal pada tahun pertama nilai tabungan sudah 1.100.000, dengan demikian tahun berikutnya bunga bank yang ia dapat bukan 100.000 melainkan 110.000 karena 10% dari tabungannya tahun sebelumnya.
Suku Bunga Majemuk
Proses mendapatkan rumus Suku Bunga Majemuk dapat dilakukan dengan memisalkan sebuah Bank memberikan Suku Bunga sebesar x% atau kita sebuah i untuk tabungan awal sebesar M0. Maka kita dapat menghitung uang nasabah pada bulan periode ke-n sebesar Mn.
Bulan 0
M0
Bulan 1
Tabungan awal + x% dari tabungan di awal
M0 + M0i
Satukan suku M0.
M0(1+i)
Dimana
M0 = Tabungan Awal
i = Suku bunga
M0i = Total bunga yang didapatkan
Bulan 2
Tabungan pada Bulan 1 + x% dari total tabungan pada bulan 1. Totalnya bisa ditulis
(M0 + M0i ) + (M0 + M0i )i
Persamaan ini dapat ditulis ulang
M0 + M0i + M0i + M0i2
M0 + 2M0i + M0i2
keluarkan M0
M0(1+2i+i2)
perhatikan suku (1+2i+i2). Ini adalah bentuk persamaan kuadrat dari
(1+2i+i2) = (1+i)(1+i)=(1+i)2
Dengan demikian tabungan pada bulan pertama adalah
M0(1+i)2
Bentuk Pola Rumus
Jika ketiga deret tabungan ini ditulis akan menghasilkan deret sebagai berikut:
- M0=M0
- M1=M0(1+i)
- M2=M0(1+i)2
Deret ini membentuk deret
- M0= M0(1+i)0
- M1=M0(1+i)1
- M2=M0(1+i)2
atau
M_n=M_0(1+i)^n
Keterangan :
Mn : Nilai tabungan
M0 : Tabungan Awal
i : Suku Bunga
n : periode ke